Serveur d'exploration sur les relations entre la France et l'Australie

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity

Identifieur interne : 005732 ( Main/Exploration ); précédent : 005731; suivant : 005733

A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity

Auteurs : R. Gelet [France, Australie] ; B. Loret [France] ; N. Khalili [Australie]

Source :

RBID : ISTEX:D7C50806504E88303EBF5BE760837E71F81D928D

Descripteurs français

English descriptors

Abstract

The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.

Url:
DOI: 10.1029/2012JB009161


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI wicri:istexFullTextTei="biblStruct">
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity</title>
<author>
<name sortKey="Gelet, R" sort="Gelet, R" uniqKey="Gelet R" first="R." last="Gelet">R. Gelet</name>
</author>
<author>
<name sortKey="Loret, B" sort="Loret, B" uniqKey="Loret B" first="B." last="Loret">B. Loret</name>
</author>
<author>
<name sortKey="Khalili, N" sort="Khalili, N" uniqKey="Khalili N" first="N." last="Khalili">N. Khalili</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">ISTEX</idno>
<idno type="RBID">ISTEX:D7C50806504E88303EBF5BE760837E71F81D928D</idno>
<date when="2012" year="2012">2012</date>
<idno type="doi">10.1029/2012JB009161</idno>
<idno type="url">https://api.istex.fr/document/D7C50806504E88303EBF5BE760837E71F81D928D/fulltext/pdf</idno>
<idno type="wicri:Area/Istex/Corpus">002830</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Corpus" wicri:corpus="ISTEX">002830</idno>
<idno type="wicri:Area/Istex/Curation">002830</idno>
<idno type="wicri:Area/Istex/Checkpoint">000657</idno>
<idno type="wicri:explorRef" wicri:stream="Istex" wicri:step="Checkpoint">000657</idno>
<idno type="wicri:doubleKey">0148-0227:2012:Gelet R:a:thermo:hydro</idno>
<idno type="wicri:Area/Main/Merge">005999</idno>
<idno type="wicri:source">INIST</idno>
<idno type="RBID">Pascal:12-0377459</idno>
<idno type="wicri:Area/PascalFrancis/Corpus">000F84</idno>
<idno type="wicri:Area/PascalFrancis/Curation">004F33</idno>
<idno type="wicri:Area/PascalFrancis/Checkpoint">001392</idno>
<idno type="wicri:explorRef" wicri:stream="PascalFrancis" wicri:step="Checkpoint">001392</idno>
<idno type="wicri:doubleKey">0148-0227:2012:Gelet R:a:thermo:hydro</idno>
<idno type="wicri:Area/Main/Merge">006227</idno>
<idno type="wicri:Area/Main/Curation">005732</idno>
<idno type="wicri:Area/Main/Exploration">005732</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title level="a" type="main">A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity</title>
<author>
<name sortKey="Gelet, R" sort="Gelet, R" uniqKey="Gelet R" first="R." last="Gelet">R. Gelet</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales</wicri:regionArea>
<wicri:noRegion>New South Wales</wicri:noRegion>
</affiliation>
<affiliation></affiliation>
<affiliation></affiliation>
</author>
<author>
<name sortKey="Loret, B" sort="Loret, B" uniqKey="Loret B" first="B." last="Loret">B. Loret</name>
<affiliation wicri:level="3">
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Sols, Solides, Structures, Institut National Polytechnique de Grenoble, Grenoble</wicri:regionArea>
<placeName>
<region type="region">Auvergne-Rhône-Alpes</region>
<region type="old region">Rhône-Alpes</region>
<settlement type="city">Grenoble</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Khalili, N" sort="Khalili, N" uniqKey="Khalili N" first="N." last="Khalili">N. Khalili</name>
<affiliation wicri:level="1">
<country xml:lang="fr">Australie</country>
<wicri:regionArea>School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales</wicri:regionArea>
<wicri:noRegion>New South Wales</wicri:noRegion>
</affiliation>
</author>
</analytic>
<monogr></monogr>
<series>
<title level="j" type="main">Journal of Geophysical Research: Solid Earth</title>
<title level="j" type="alt">JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH</title>
<idno type="ISSN">0148-0227</idno>
<idno type="eISSN">2156-2202</idno>
<imprint>
<biblScope unit="vol">117</biblScope>
<biblScope unit="issue">B7</biblScope>
<biblScope unit="page-count">23</biblScope>
<date type="published" when="2012-07">2012-07</date>
</imprint>
<idno type="ISSN">0148-0227</idno>
</series>
</biblStruct>
</sourceDesc>
<seriesStmt>
<idno type="ISSN">0148-0227</idno>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Average fracture aperture</term>
<term>Average fracture spacing</term>
<term>Boundary conditions</term>
<term>Bruel</term>
<term>Chemical potential</term>
<term>Chemical potentials</term>
<term>Circulation test</term>
<term>Circulation tests</term>
<term>Coefficient</term>
<term>Complementary energy</term>
<term>Compressibility</term>
<term>Compressive stress</term>
<term>Constitutive</term>
<term>Constitutive equations</term>
<term>Constitutive relations</term>
<term>Convection</term>
<term>Diffusion</term>
<term>Diffusivity</term>
<term>Displacement vector</term>
<term>Dissipation</term>
<term>Double porosity</term>
<term>Dual</term>
<term>Dual porosity</term>
<term>Dual porosity concept</term>
<term>Dual porosity model</term>
<term>Dual porosity model displays</term>
<term>Dual porosity response</term>
<term>Early time</term>
<term>Effective stress</term>
<term>Energy exchange</term>
<term>Energy exchanges</term>
<term>Energy transfer</term>
<term>Fenton</term>
<term>Fenton Hill</term>
<term>Fenton hill</term>
<term>Fenton hill reservoir</term>
<term>Fgrav fsurf</term>
<term>Field data</term>
<term>Field equations</term>
<term>Field response</term>
<term>Fluid</term>
<term>Fluid densities</term>
<term>Fluid heat transfer</term>
<term>Fluid heat transfer coefficient</term>
<term>Fluid loss</term>
<term>Fluid phase</term>
<term>Fluid phases</term>
<term>Fluid pressures</term>
<term>Fracture</term>
<term>Fracture fluid</term>
<term>Fracture fluid phase</term>
<term>Fracture fluid pressure</term>
<term>Fracture network</term>
<term>Fracture network permeability</term>
<term>Fracture permeability</term>
<term>Fracture porosity</term>
<term>Fracture spacing</term>
<term>Free energy</term>
<term>Gelet</term>
<term>Generalized diffusion</term>
<term>Geothermal</term>
<term>Geothermal reservoirs</term>
<term>Geothermics</term>
<term>Ghassemi</term>
<term>Heat capacity</term>
<term>Heat extraction</term>
<term>Heat transfer</term>
<term>Hydraulic</term>
<term>Hydraulic equilibrium</term>
<term>Inequality</term>
<term>Injection</term>
<term>Injection area</term>
<term>Injection state</term>
<term>Khalili</term>
<term>Large fracture spacings</term>
<term>Large mass transfer</term>
<term>Large pore permeability</term>
<term>Late time</term>
<term>Leakage</term>
<term>Leakage parameter</term>
<term>Loading boundary conditions</term>
<term>Loret</term>
<term>Ltne</term>
<term>Ltne analysis</term>
<term>Ltne model</term>
<term>Mass transfer</term>
<term>Material parameters</term>
<term>Matrix</term>
<term>Mech</term>
<term>Mechanical boundary conditions</term>
<term>Methods geomech</term>
<term>Other hand</term>
<term>Other phases</term>
<term>Parameter</term>
<term>Permeability</term>
<term>Permeation</term>
<term>Plane strain analysis</term>
<term>Pore</term>
<term>Pore fluid</term>
<term>Pore fluid pressure</term>
<term>Pore permeability</term>
<term>Pore pressure</term>
<term>Pore pressure contribution</term>
<term>Pore pressure drop</term>
<term>Pore pressure response</term>
<term>Porosity</term>
<term>Porous block</term>
<term>Porous blocks</term>
<term>Porous media</term>
<term>Porous medium</term>
<term>Primary variables</term>
<term>Production wells</term>
<term>Reservoir</term>
<term>Reservoir response</term>
<term>Residual</term>
<term>Rock mech</term>
<term>Rock reservoir</term>
<term>Rock reservoirs</term>
<term>Rosemanowes</term>
<term>Second stage</term>
<term>Sensitivity analysis</term>
<term>Simulation</term>
<term>Single porosity</term>
<term>Single porosity model</term>
<term>Single porosity response</term>
<term>Skeleton</term>
<term>Small fracture spacings</term>
<term>Solid phase</term>
<term>Solid skeleton</term>
<term>Solid temperature</term>
<term>Spacing</term>
<term>Specific fluid heat transfer coefficient</term>
<term>Specific pore fluid heat transfer coefficient</term>
<term>Stress concept</term>
<term>Tensile stress</term>
<term>Thermal contraction</term>
<term>Thermal depletion</term>
<term>Thermal diffusivity</term>
<term>Thermal equilibria</term>
<term>Thermal equilibrium</term>
<term>Thermodynamic potentials</term>
<term>Thermomechanical</term>
<term>Thermomechanical behavior</term>
<term>Total stress</term>
<term>Total volume</term>
<term>Triple point</term>
<term>Vertical profiles</term>
<term>Volume fraction</term>
<term>Weak form</term>
<term>Zyvoloski</term>
<term>circulation</term>
<term>diffusion</term>
<term>displacements</term>
<term>energy</term>
<term>equilibrium</term>
<term>finite element analysis</term>
<term>fluid pressure</term>
<term>fractures</term>
<term>geothermal reservoirs</term>
<term>hot dry rocks</term>
<term>mass transfer</term>
<term>porosity</term>
<term>skeletons</term>
<term>stress</term>
<term>temperature</term>
<term>theory</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Circulation</term>
<term>Colline Fenton</term>
<term>Contrainte</term>
<term>Diffusion</term>
<term>Diffusion(transport)</term>
<term>Déplacement</term>
<term>Energie</term>
<term>Equilibre</term>
<term>Fracture</term>
<term>Méthode élément fini</term>
<term>Porosité</term>
<term>Potentiel chimique</term>
<term>Pression fluide</term>
<term>Roche chaude sèche</term>
<term>Réservoir géothermique</term>
<term>Squelette</term>
<term>Température</term>
<term>Théorie</term>
<term>Transfert masse</term>
</keywords>
<keywords scheme="Teeft" xml:lang="en">
<term>Average fracture aperture</term>
<term>Average fracture spacing</term>
<term>Boundary conditions</term>
<term>Bruel</term>
<term>Chemical potentials</term>
<term>Circulation test</term>
<term>Circulation tests</term>
<term>Coefficient</term>
<term>Complementary energy</term>
<term>Compressibility</term>
<term>Compressive stress</term>
<term>Constitutive</term>
<term>Constitutive equations</term>
<term>Constitutive relations</term>
<term>Convection</term>
<term>Diffusivity</term>
<term>Displacement vector</term>
<term>Dissipation</term>
<term>Double porosity</term>
<term>Dual</term>
<term>Dual porosity</term>
<term>Dual porosity concept</term>
<term>Dual porosity model</term>
<term>Dual porosity model displays</term>
<term>Dual porosity response</term>
<term>Early time</term>
<term>Effective stress</term>
<term>Energy exchange</term>
<term>Energy exchanges</term>
<term>Energy transfer</term>
<term>Fenton</term>
<term>Fenton hill</term>
<term>Fenton hill reservoir</term>
<term>Fgrav fsurf</term>
<term>Field data</term>
<term>Field equations</term>
<term>Field response</term>
<term>Fluid</term>
<term>Fluid densities</term>
<term>Fluid heat transfer</term>
<term>Fluid heat transfer coefficient</term>
<term>Fluid loss</term>
<term>Fluid phase</term>
<term>Fluid phases</term>
<term>Fluid pressures</term>
<term>Fracture</term>
<term>Fracture fluid</term>
<term>Fracture fluid phase</term>
<term>Fracture fluid pressure</term>
<term>Fracture network</term>
<term>Fracture network permeability</term>
<term>Fracture permeability</term>
<term>Fracture porosity</term>
<term>Fracture spacing</term>
<term>Free energy</term>
<term>Gelet</term>
<term>Generalized diffusion</term>
<term>Geothermal</term>
<term>Geothermal reservoirs</term>
<term>Geothermics</term>
<term>Ghassemi</term>
<term>Heat capacity</term>
<term>Heat extraction</term>
<term>Heat transfer</term>
<term>Hydraulic</term>
<term>Hydraulic equilibrium</term>
<term>Inequality</term>
<term>Injection</term>
<term>Injection area</term>
<term>Injection state</term>
<term>Khalili</term>
<term>Large fracture spacings</term>
<term>Large mass transfer</term>
<term>Large pore permeability</term>
<term>Late time</term>
<term>Leakage</term>
<term>Leakage parameter</term>
<term>Loading boundary conditions</term>
<term>Loret</term>
<term>Ltne</term>
<term>Ltne analysis</term>
<term>Ltne model</term>
<term>Mass transfer</term>
<term>Material parameters</term>
<term>Matrix</term>
<term>Mech</term>
<term>Mechanical boundary conditions</term>
<term>Methods geomech</term>
<term>Other hand</term>
<term>Other phases</term>
<term>Parameter</term>
<term>Permeability</term>
<term>Permeation</term>
<term>Plane strain analysis</term>
<term>Pore</term>
<term>Pore fluid</term>
<term>Pore fluid pressure</term>
<term>Pore permeability</term>
<term>Pore pressure</term>
<term>Pore pressure contribution</term>
<term>Pore pressure drop</term>
<term>Pore pressure response</term>
<term>Porosity</term>
<term>Porous block</term>
<term>Porous blocks</term>
<term>Porous media</term>
<term>Porous medium</term>
<term>Primary variables</term>
<term>Production wells</term>
<term>Reservoir</term>
<term>Reservoir response</term>
<term>Residual</term>
<term>Rock mech</term>
<term>Rock reservoir</term>
<term>Rock reservoirs</term>
<term>Rosemanowes</term>
<term>Second stage</term>
<term>Sensitivity analysis</term>
<term>Simulation</term>
<term>Single porosity</term>
<term>Single porosity model</term>
<term>Single porosity response</term>
<term>Skeleton</term>
<term>Small fracture spacings</term>
<term>Solid phase</term>
<term>Solid skeleton</term>
<term>Solid temperature</term>
<term>Spacing</term>
<term>Specific fluid heat transfer coefficient</term>
<term>Specific pore fluid heat transfer coefficient</term>
<term>Stress concept</term>
<term>Tensile stress</term>
<term>Thermal contraction</term>
<term>Thermal depletion</term>
<term>Thermal diffusivity</term>
<term>Thermal equilibria</term>
<term>Thermal equilibrium</term>
<term>Thermodynamic potentials</term>
<term>Thermomechanical</term>
<term>Thermomechanical behavior</term>
<term>Total stress</term>
<term>Total volume</term>
<term>Triple point</term>
<term>Vertical profiles</term>
<term>Volume fraction</term>
<term>Weak form</term>
<term>Zyvoloski</term>
</keywords>
<keywords scheme="Wicri" type="topic" xml:lang="fr">
<term>Simulation</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract">The constitutive thermo‐hydro‐mechanical equations of fractured media are embodied in the theory of mixtures applied to three‐phase poroelastic media. The solid skeleton contains two distinct cavities filled with the same fluid. Each of the three phases is endowed with its own temperature. The constitutive relations governing the thermomechanical behavior, generalized diffusion and transfer are structured by, and satisfy, the dissipation inequality. The cavities exchange both mass and energy. Mass exchanges are driven by the jump in scaled chemical potential, and energy exchanges by the jump in coldness. The finite element approximation uses the displacement vector, the two fluid pressures and the three temperatures as primary variables. It is used to analyze a generic hot dry rock geothermal reservoir. Three parameters of the model are calibrated from the thermal outputs of Fenton Hill and Rosemanowes HDR reservoirs. The calibrated model is next applied to simulate circulation tests at the Fenton Hill HDR reservoir. The finer thermo‐hydro‐mechanical response provided by the dual porosity model with respect to a single porosity model is highlighted in a parameter analysis. Emphasis is put on the influence of the fracture spacing, on the effective stress response and on the permeation of the fluid into the porous blocks. The dual porosity model yields a thermally induced effective stress that is less tensile compared with the single porosity response. This effect becomes significant for large fracture spacings. In agreement with field data, fluid loss is observed to be high initially and to decrease with time.</div>
</front>
</TEI>
<affiliations>
<list>
<country>
<li>Australie</li>
<li>France</li>
</country>
<region>
<li>Auvergne-Rhône-Alpes</li>
<li>Rhône-Alpes</li>
</region>
<settlement>
<li>Grenoble</li>
</settlement>
</list>
<tree>
<country name="France">
<region name="Auvergne-Rhône-Alpes">
<name sortKey="Gelet, R" sort="Gelet, R" uniqKey="Gelet R" first="R." last="Gelet">R. Gelet</name>
</region>
<name sortKey="Loret, B" sort="Loret, B" uniqKey="Loret B" first="B." last="Loret">B. Loret</name>
</country>
<country name="Australie">
<noRegion>
<name sortKey="Gelet, R" sort="Gelet, R" uniqKey="Gelet R" first="R." last="Gelet">R. Gelet</name>
</noRegion>
<name sortKey="Khalili, N" sort="Khalili, N" uniqKey="Khalili N" first="N." last="Khalili">N. Khalili</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Wicri/Asie/explor/AustralieFrV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 005732 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 005732 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Wicri/Asie
   |area=    AustralieFrV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     ISTEX:D7C50806504E88303EBF5BE760837E71F81D928D
   |texte=   A thermo‐hydro‐mechanical coupled model in local thermal non‐equilibrium for fractured HDR reservoir with double porosity
}}

Wicri

This area was generated with Dilib version V0.6.33.
Data generation: Tue Dec 5 10:43:12 2017. Site generation: Tue Mar 5 14:07:20 2024